685 lines
27 KiB
C#
685 lines
27 KiB
C#
// Copyright (c) 2012, Outercurve Foundation.
|
||
// All rights reserved.
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without modification,
|
||
// are permitted provided that the following conditions are met:
|
||
//
|
||
// - Redistributions of source code must retain the above copyright notice, this
|
||
// list of conditions and the following disclaimer.
|
||
//
|
||
// - Redistributions in binary form must reproduce the above copyright notice,
|
||
// this list of conditions and the following disclaimer in the documentation
|
||
// and/or other materials provided with the distribution.
|
||
//
|
||
// - Neither the name of the Outercurve Foundation nor the names of its
|
||
// contributors may be used to endorse or promote products derived from this
|
||
// software without specific prior written permission.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
||
using System;
|
||
using System.Collections.Generic;
|
||
using System.Text;
|
||
|
||
namespace WebsitePanel.Server.Utils
|
||
{
|
||
/*
|
||
* FreeSec: libcrypt for NetBSD
|
||
*
|
||
* Copyright (c) 1994 David Burren
|
||
* All rights reserved.
|
||
*
|
||
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
|
||
* this file should now *only* export crypt(), in order to make
|
||
* binaries of libcrypt exportable from the USA
|
||
*
|
||
* Adapted for FreeBSD-4.0 by Mark R V Murray
|
||
* this file should now *only* export crypt_des(), in order to make
|
||
* a module that can be optionally included in libcrypt.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. Neither the name of the author nor the names of other contributors
|
||
* may be used to endorse or promote products derived from this software
|
||
* without specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*/
|
||
|
||
public class BsdDES
|
||
{
|
||
byte[] IP = new byte[64] {
|
||
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
|
||
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
|
||
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
|
||
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
|
||
};
|
||
|
||
byte[] inv_key_perm = new byte[64];
|
||
byte[] key_perm = new byte[56] {
|
||
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
|
||
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
|
||
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
|
||
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
|
||
};
|
||
|
||
byte[] key_shifts = new byte[16] {
|
||
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
||
};
|
||
|
||
byte[] inv_comp_perm = new byte[56];
|
||
byte[] comp_perm = new byte[48] {
|
||
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
|
||
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
|
||
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
|
||
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
|
||
};
|
||
|
||
/*
|
||
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
|
||
*/
|
||
|
||
byte[,] u_sbox = new byte[8, 64];
|
||
byte[,] sbox = new byte[8, 64] {
|
||
{
|
||
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
||
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
||
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
||
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
|
||
},
|
||
{
|
||
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
||
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
||
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
||
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
|
||
},
|
||
{
|
||
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
||
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
||
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
||
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
|
||
},
|
||
{
|
||
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
||
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
||
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
||
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
|
||
},
|
||
{
|
||
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
||
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
||
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
||
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
|
||
},
|
||
{
|
||
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
||
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
||
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
||
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
|
||
},
|
||
{
|
||
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
||
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
||
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
||
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
|
||
},
|
||
{
|
||
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
||
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
||
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
||
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
|
||
}
|
||
};
|
||
|
||
|
||
byte[] un_pbox = new byte[32];
|
||
byte[] pbox = new byte[32] {
|
||
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
|
||
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
|
||
};
|
||
|
||
uint[] bits32 = new uint[32]
|
||
{
|
||
0x80000000, 0x40000000, 0x20000000, 0x10000000,
|
||
0x08000000, 0x04000000, 0x02000000, 0x01000000,
|
||
0x00800000, 0x00400000, 0x00200000, 0x00100000,
|
||
0x00080000, 0x00040000, 0x00020000, 0x00010000,
|
||
0x00008000, 0x00004000, 0x00002000, 0x00001000,
|
||
0x00000800, 0x00000400, 0x00000200, 0x00000100,
|
||
0x00000080, 0x00000040, 0x00000020, 0x00000010,
|
||
0x00000008, 0x00000004, 0x00000002, 0x00000001
|
||
};
|
||
|
||
byte[] bits8 = new byte[8] { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
|
||
|
||
byte[] ascii64 = System.Text.ASCIIEncoding.ASCII.GetBytes(
|
||
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
||
/* 0000000000111111111122222222223333333333444444444455555555556666 */
|
||
/* 0123456789012345678901234567890123456789012345678901234567890123 */
|
||
|
||
bool des_initialised = false;
|
||
uint saltbits;
|
||
uint old_salt;
|
||
byte[] init_perm = new byte[64], final_perm = new byte[64];
|
||
uint[] en_keysl = new uint[16], en_keysr = new uint[16];
|
||
uint[] de_keysl = new uint[16], de_keysr = new uint[16];
|
||
byte[,] m_sbox = new byte[4, 4096];
|
||
uint[,] psbox = new uint[4, 256];
|
||
uint[,] ip_maskl = new uint[8, 256], ip_maskr = new uint[8, 256];
|
||
uint[,] fp_maskl = new uint[8, 256], fp_maskr = new uint[8, 256];
|
||
uint[,] key_perm_maskl = new uint[8, 128], key_perm_maskr = new uint[8, 128];
|
||
uint[,] comp_maskl = new uint[8, 128], comp_maskr = new uint[8, 128];
|
||
uint old_rawkey0, old_rawkey1;
|
||
|
||
|
||
|
||
uint AsciiToBin(char ch)
|
||
{
|
||
if (ch > 'z')
|
||
return 0;
|
||
if (ch >= 'a')
|
||
return (uint)(ch - 'a' + 38);
|
||
if (ch > 'Z')
|
||
return 0;
|
||
if (ch >= 'A')
|
||
return (uint)(ch - 'A' + 12);
|
||
if (ch > '9')
|
||
return (0);
|
||
if (ch >= '.')
|
||
return (uint)(ch - '.');
|
||
return 0;
|
||
}
|
||
|
||
void Init()
|
||
{
|
||
int inbit, obit;
|
||
old_rawkey0 = old_rawkey1 = 0;
|
||
saltbits = 0;
|
||
old_salt = 0;
|
||
const int bits28 = 4;
|
||
const int bits24 = 8;
|
||
|
||
/*
|
||
* Invert the S-boxes, reordering the input bits.
|
||
*/
|
||
for (int i = 0; i < 8; i++)
|
||
for (int j = 0; j < 64; j++)
|
||
{
|
||
int b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
|
||
u_sbox[i, j] = sbox[i, b];
|
||
}
|
||
|
||
/*
|
||
* Convert the inverted S-boxes into 4 arrays of 8 bits.
|
||
* Each will handle 12 bits of the S-box input.
|
||
*/
|
||
for (int b = 0; b < 4; b++)
|
||
for (int i = 0; i < 64; i++)
|
||
for (int j = 0; j < 64; j++)
|
||
m_sbox[b, (i << 6) | j] =
|
||
(byte)((u_sbox[(b << 1), i] << 4) |
|
||
u_sbox[(b << 1) + 1, j]);
|
||
|
||
/*
|
||
* Set up the initial & final permutations into a useful form, and
|
||
* initialise the inverted key permutation.
|
||
*/
|
||
for (int i = 0; i < 64; i++)
|
||
{
|
||
init_perm[final_perm[i] = (byte)(IP[i] - 1)] = (byte)i;
|
||
inv_key_perm[i] = 255;
|
||
}
|
||
|
||
/*
|
||
* Invert the key permutation and initialise the inverted key
|
||
* compression permutation.
|
||
*/
|
||
for (int i = 0; i < 56; i++)
|
||
{
|
||
inv_key_perm[key_perm[i] - 1] = (byte)i;
|
||
inv_comp_perm[i] = 255;
|
||
}
|
||
|
||
/*
|
||
* Invert the key compression permutation.
|
||
*/
|
||
for (int i = 0; i < 48; i++)
|
||
{
|
||
inv_comp_perm[comp_perm[i] - 1] = (byte)i;
|
||
}
|
||
|
||
/*
|
||
* Set up the OR-mask arrays for the initial and final permutations,
|
||
* and for the key initial and compression permutations.
|
||
*/
|
||
for (int k = 0; k < 8; k++)
|
||
{
|
||
for (int i = 0; i < 256; i++)
|
||
{
|
||
ip_maskl[k, i] = 0;
|
||
ip_maskr[k, i] = 0;
|
||
fp_maskl[k, i] = 0;
|
||
fp_maskr[k, i] = 0;
|
||
for (int j = 0; j < 8; j++)
|
||
{
|
||
inbit = 8 * k + j;
|
||
if ((i & bits8[j]) > 0)
|
||
{
|
||
if ((obit = init_perm[inbit]) < 32)
|
||
ip_maskl[k, i] |= bits32[obit];
|
||
else
|
||
ip_maskr[k, i] |= bits32[obit - 32];
|
||
if ((obit = final_perm[inbit]) < 32)
|
||
fp_maskl[k, i] |= bits32[obit];
|
||
else
|
||
fp_maskr[k, i] |= bits32[obit - 32];
|
||
}
|
||
}
|
||
}
|
||
for (int i = 0; i < 128; i++)
|
||
{
|
||
key_perm_maskl[k, i] = 0;
|
||
key_perm_maskr[k, i] = 0;
|
||
for (int j = 0; j < 7; j++)
|
||
{
|
||
inbit = 8 * k + j;
|
||
if ((i & bits8[j + 1]) > 0)
|
||
{
|
||
if ((obit = inv_key_perm[inbit]) == 255)
|
||
continue;
|
||
if (obit < 28)
|
||
key_perm_maskl[k, i] |= bits32[obit + bits28];
|
||
else
|
||
key_perm_maskr[k, i] |= bits32[obit - 28 + bits28];
|
||
}
|
||
}
|
||
comp_maskl[k, i] = 0;
|
||
comp_maskr[k, i] = 0;
|
||
for (int j = 0; j < 7; j++)
|
||
{
|
||
inbit = 7 * k + j;
|
||
if ((i & bits8[j + 1]) > 0)
|
||
{
|
||
if ((obit = inv_comp_perm[inbit]) == 255)
|
||
continue;
|
||
if (obit < 24)
|
||
comp_maskl[k, i] |= bits32[obit + bits24];
|
||
else
|
||
comp_maskr[k, i] |= bits32[obit - 24 + bits24];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Invert the P-box permutation, and convert into OR-masks for
|
||
* handling the output of the S-box arrays setup above.
|
||
*/
|
||
for (int i = 0; i < 32; i++)
|
||
un_pbox[pbox[i] - 1] = (byte)i;
|
||
|
||
for (int b = 0; b < 4; b++)
|
||
for (int i = 0; i < 256; i++)
|
||
{
|
||
psbox[b, i] = 0;
|
||
for (int j = 0; j < 8; j++)
|
||
{
|
||
if ((i & bits8[j]) > 0)
|
||
psbox[b, i] |= bits32[un_pbox[8 * b + j]];
|
||
}
|
||
}
|
||
|
||
des_initialised = true;
|
||
}
|
||
|
||
void SetupSalt(uint salt)
|
||
{
|
||
uint obit, saltbit;
|
||
int i;
|
||
|
||
if (salt == old_salt)
|
||
return;
|
||
old_salt = salt;
|
||
|
||
saltbits = 0;
|
||
saltbit = 1;
|
||
obit = 0x800000;
|
||
for (i = 0; i < 24; i++)
|
||
{
|
||
if ((salt & saltbit) > 0)
|
||
saltbits |= obit;
|
||
saltbit <<= 1;
|
||
obit >>= 1;
|
||
}
|
||
}
|
||
|
||
int SetKey(byte[] key)
|
||
{
|
||
if (!des_initialised)
|
||
Init();
|
||
|
||
uint rawkey0 = ntohl(BitConverter.ToUInt32(key, 0));
|
||
uint rawkey1 = ntohl(BitConverter.ToUInt32(key, 4));
|
||
|
||
if ((rawkey0 | rawkey1) > 0
|
||
&& rawkey0 == old_rawkey0
|
||
&& rawkey1 == old_rawkey1)
|
||
{
|
||
/*
|
||
* Already setup for this key.
|
||
* This optimisation fails on a zero key (which is weak and
|
||
* has bad parity anyway) in order to simplify the starting
|
||
* conditions.
|
||
*/
|
||
return 0;
|
||
}
|
||
old_rawkey0 = rawkey0;
|
||
old_rawkey1 = rawkey1;
|
||
|
||
/*
|
||
* Do key permutation and split into two 28-bit subkeys.
|
||
*/
|
||
uint k0 = key_perm_maskl[0, rawkey0 >> 25]
|
||
| key_perm_maskl[1, (rawkey0 >> 17) & 0x7f]
|
||
| key_perm_maskl[2, (rawkey0 >> 9) & 0x7f]
|
||
| key_perm_maskl[3, (rawkey0 >> 1) & 0x7f]
|
||
| key_perm_maskl[4, rawkey1 >> 25]
|
||
| key_perm_maskl[5, (rawkey1 >> 17) & 0x7f]
|
||
| key_perm_maskl[6, (rawkey1 >> 9) & 0x7f]
|
||
| key_perm_maskl[7, (rawkey1 >> 1) & 0x7f];
|
||
uint k1 = key_perm_maskr[0, rawkey0 >> 25]
|
||
| key_perm_maskr[1, (rawkey0 >> 17) & 0x7f]
|
||
| key_perm_maskr[2, (rawkey0 >> 9) & 0x7f]
|
||
| key_perm_maskr[3, (rawkey0 >> 1) & 0x7f]
|
||
| key_perm_maskr[4, rawkey1 >> 25]
|
||
| key_perm_maskr[5, (rawkey1 >> 17) & 0x7f]
|
||
| key_perm_maskr[6, (rawkey1 >> 9) & 0x7f]
|
||
| key_perm_maskr[7, (rawkey1 >> 1) & 0x7f];
|
||
/*
|
||
* Rotate subkeys and do compression permutation.
|
||
*/
|
||
int shifts = 0;
|
||
for (int round = 0; round < 16; round++)
|
||
{
|
||
uint t0, t1;
|
||
|
||
shifts += key_shifts[round];
|
||
|
||
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
|
||
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
|
||
|
||
de_keysl[15 - round] =
|
||
en_keysl[round] = comp_maskl[0, (t0 >> 21) & 0x7f]
|
||
| comp_maskl[1, (t0 >> 14) & 0x7f]
|
||
| comp_maskl[2, (t0 >> 7) & 0x7f]
|
||
| comp_maskl[3, t0 & 0x7f]
|
||
| comp_maskl[4, (t1 >> 21) & 0x7f]
|
||
| comp_maskl[5, (t1 >> 14) & 0x7f]
|
||
| comp_maskl[6, (t1 >> 7) & 0x7f]
|
||
| comp_maskl[7, t1 & 0x7f];
|
||
|
||
de_keysr[15 - round] =
|
||
en_keysr[round] = comp_maskr[0, (t0 >> 21) & 0x7f]
|
||
| comp_maskr[1, (t0 >> 14) & 0x7f]
|
||
| comp_maskr[2, (t0 >> 7) & 0x7f]
|
||
| comp_maskr[3, t0 & 0x7f]
|
||
| comp_maskr[4, (t1 >> 21) & 0x7f]
|
||
| comp_maskr[5, (t1 >> 14) & 0x7f]
|
||
| comp_maskr[6, (t1 >> 7) & 0x7f]
|
||
| comp_maskr[7, t1 & 0x7f];
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int DoDes(uint l_in, uint r_in, out uint l_out, out uint r_out, int count)
|
||
{
|
||
/*
|
||
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
|
||
*/
|
||
uint l, r;
|
||
uint[] kl1, kr1;
|
||
int kl, kr;
|
||
uint f, r48l, r48r;
|
||
int round;
|
||
|
||
f = 0;
|
||
l_out = r_out = 0;
|
||
|
||
if (count == 0)
|
||
{
|
||
return 1;
|
||
}
|
||
else if (count > 0)
|
||
{
|
||
/*
|
||
* Encrypting
|
||
*/
|
||
kl1 = en_keysl;
|
||
kr1 = en_keysr;
|
||
}
|
||
else
|
||
{
|
||
/*
|
||
* Decrypting
|
||
*/
|
||
count = -count;
|
||
kl1 = de_keysl;
|
||
kr1 = de_keysr;
|
||
}
|
||
|
||
/*
|
||
* Do initial permutation (IP).
|
||
*/
|
||
l = ip_maskl[0, l_in >> 24]
|
||
| ip_maskl[1, (l_in >> 16) & 0xff]
|
||
| ip_maskl[2, (l_in >> 8) & 0xff]
|
||
| ip_maskl[3, l_in & 0xff]
|
||
| ip_maskl[4, r_in >> 24]
|
||
| ip_maskl[5, (r_in >> 16) & 0xff]
|
||
| ip_maskl[6, (r_in >> 8) & 0xff]
|
||
| ip_maskl[7, r_in & 0xff];
|
||
r = ip_maskr[0, l_in >> 24]
|
||
| ip_maskr[1, (l_in >> 16) & 0xff]
|
||
| ip_maskr[2, (l_in >> 8) & 0xff]
|
||
| ip_maskr[3, l_in & 0xff]
|
||
| ip_maskr[4, r_in >> 24]
|
||
| ip_maskr[5, (r_in >> 16) & 0xff]
|
||
| ip_maskr[6, (r_in >> 8) & 0xff]
|
||
| ip_maskr[7, r_in & 0xff];
|
||
|
||
while (count-- > 0)
|
||
{
|
||
/*
|
||
* Do each round.
|
||
*/
|
||
kl = 0;
|
||
kr = 0;
|
||
round = 16;
|
||
while (round-- > 0)
|
||
{
|
||
/*
|
||
* Expand R to 48 bits (simulate the E-box).
|
||
*/
|
||
r48l = ((r & 0x00000001) << 23)
|
||
| ((r & 0xf8000000) >> 9)
|
||
| ((r & 0x1f800000) >> 11)
|
||
| ((r & 0x01f80000) >> 13)
|
||
| ((r & 0x001f8000) >> 15);
|
||
|
||
r48r = ((r & 0x0001f800) << 7)
|
||
| ((r & 0x00001f80) << 5)
|
||
| ((r & 0x000001f8) << 3)
|
||
| ((r & 0x0000001f) << 1)
|
||
| ((r & 0x80000000) >> 31);
|
||
/*
|
||
* Do salting for crypt() and friends, and
|
||
* XOR with the permuted key.
|
||
*/
|
||
f = (r48l ^ r48r) & saltbits;
|
||
r48l ^= f ^ kl1[kl++];
|
||
r48r ^= f ^ kr1[kr++];
|
||
/*
|
||
* Do sbox lookups (which shrink it back to 32 bits)
|
||
* and do the pbox permutation at the same time.
|
||
*/
|
||
f = psbox[0, m_sbox[0, r48l >> 12]]
|
||
| psbox[1, m_sbox[1, r48l & 0xfff]]
|
||
| psbox[2, m_sbox[2, r48r >> 12]]
|
||
| psbox[3, m_sbox[3, r48r & 0xfff]];
|
||
/*
|
||
* Now that we've permuted things, complete f().
|
||
*/
|
||
f ^= l;
|
||
l = r;
|
||
r = f;
|
||
}
|
||
r = l;
|
||
l = f;
|
||
}
|
||
/*
|
||
* Do final permutation (inverse of IP).
|
||
*/
|
||
l_out = fp_maskl[0, l >> 24]
|
||
| fp_maskl[1, (l >> 16) & 0xff]
|
||
| fp_maskl[2, (l >> 8) & 0xff]
|
||
| fp_maskl[3, l & 0xff]
|
||
| fp_maskl[4, r >> 24]
|
||
| fp_maskl[5, (r >> 16) & 0xff]
|
||
| fp_maskl[6, (r >> 8) & 0xff]
|
||
| fp_maskl[7, r & 0xff];
|
||
r_out = fp_maskr[0, l >> 24]
|
||
| fp_maskr[1, (l >> 16) & 0xff]
|
||
| fp_maskr[2, (l >> 8) & 0xff]
|
||
| fp_maskr[3, l & 0xff]
|
||
| fp_maskr[4, r >> 24]
|
||
| fp_maskr[5, (r >> 16) & 0xff]
|
||
| fp_maskr[6, (r >> 8) & 0xff]
|
||
| fp_maskr[7, r & 0xff];
|
||
return 0;
|
||
}
|
||
|
||
public string Crypt(string key)
|
||
{
|
||
// salt chars
|
||
string salt_chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./";
|
||
|
||
// generate random salt - 2 symbols
|
||
StringBuilder salt = new StringBuilder();
|
||
Random rnd = new Random();
|
||
for (int i = 0; i < 2; i++)
|
||
salt.Append(salt_chars[rnd.Next(salt_chars.Length - 1)]);
|
||
|
||
// call crypt
|
||
return Crypt(key, salt.ToString());
|
||
}
|
||
|
||
public string Crypt(string key, string setting)
|
||
{
|
||
if (String.IsNullOrEmpty(setting) || setting.Length < 2)
|
||
throw new ArgumentException("Salt must be at least 2 symbols", "setting");
|
||
|
||
uint salt, l, r0, r1;
|
||
int count;
|
||
|
||
//u_char *p, *q;
|
||
//static char output[21];
|
||
byte[] output = new byte[13];
|
||
|
||
if (!des_initialised)
|
||
Init();
|
||
|
||
/*
|
||
* Copy the key, shifting each character up by one bit
|
||
* and padding with zeros.
|
||
*/
|
||
byte[] key_bytes = System.Text.ASCIIEncoding.ASCII.GetBytes(key);
|
||
byte[] setting_bytes = System.Text.ASCIIEncoding.ASCII.GetBytes(setting);
|
||
byte[] keybuf = new byte[8];
|
||
|
||
for (int i = 0; i < keybuf.Length; i++)
|
||
keybuf[i] = (i < key_bytes.Length) ? (byte)(key_bytes[i] << 1) : (byte)0;
|
||
|
||
if (SetKey(keybuf) != 0)
|
||
return null;
|
||
|
||
/*
|
||
* "old"-style:
|
||
* setting - 2 bytes of salt
|
||
* key - up to 8 characters
|
||
*/
|
||
count = 25;
|
||
|
||
salt = (AsciiToBin(setting[1]) << 6)
|
||
| AsciiToBin(setting[0]);
|
||
|
||
output[0] = setting_bytes[0];
|
||
/*
|
||
* If the encrypted password that the salt was extracted from
|
||
* is only 1 character long, the salt will be corrupted. We
|
||
* need to ensure that the output string doesn't have an extra
|
||
* NUL in it!
|
||
*/
|
||
output[1] = setting_bytes.Length > 1 ? setting_bytes[1] : output[0];
|
||
|
||
int p = 2;
|
||
|
||
SetupSalt(salt);
|
||
/*
|
||
* Do it.
|
||
*/
|
||
if (DoDes(0, 0, out r0, out r1, count) != 0)
|
||
return null;
|
||
/*
|
||
* Now encode the result...
|
||
*/
|
||
l = (r0 >> 8);
|
||
output[p++] = ascii64[(l >> 18) & 0x3f];
|
||
output[p++] = ascii64[(l >> 12) & 0x3f];
|
||
output[p++] = ascii64[(l >> 6) & 0x3f];
|
||
output[p++] = ascii64[l & 0x3f];
|
||
|
||
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
|
||
output[p++] = ascii64[(l >> 18) & 0x3f];
|
||
output[p++] = ascii64[(l >> 12) & 0x3f];
|
||
output[p++] = ascii64[(l >> 6) & 0x3f];
|
||
output[p++] = ascii64[l & 0x3f];
|
||
|
||
l = r1 << 2;
|
||
output[p++] = ascii64[(l >> 12) & 0x3f];
|
||
output[p++] = ascii64[(l >> 6) & 0x3f];
|
||
output[p++] = ascii64[l & 0x3f];
|
||
|
||
return System.Text.ASCIIEncoding.ASCII.GetString(output);
|
||
}
|
||
|
||
uint ntohl(uint n)
|
||
{
|
||
return ((n & 0xFF) << 24) | ((n & 0xFF00) << 8) | ((n & 0xFF0000) >> 8) | ((n & 0xFF000000) >> 24);
|
||
}
|
||
}
|
||
}
|