mirror of
https://github.com/google/nomulus.git
synced 2025-05-06 15:07:55 +02:00
This changes the BigQuery input to the fields we ultimately want (fqdn, registrarName, registrarEmailAddress) and the output to a structured POJO holding the results from the API. This POJO is then converted to its final text output, i.e.: Map from registrar e-mail to list of threat-detected subdomains: {"registrarEmail": "c@fake.com", "threats": [{"url": "a.com", "threatType": "MALWARE"}]} {"registrarEmail": "d@fake.com", "threats": [{"url": "x.com", "threatType": "MALWARE"}, {"url": "y.com", "threatType": "MALWARE"}]} This gives us all the data we want in a JSON structured format, to be acted upon downstream by the to-be-constructed PublishSpec11ReportAction. Ideally, we would send an e-mail directly from the beam pipeline, but this is only possible through third-party providers (as opposed to app engine itself). ------------- Created by MOE: https://github.com/google/moe MOE_MIGRATED_REVID=209416880
194 lines
7.5 KiB
Java
194 lines
7.5 KiB
Java
// Copyright 2018 The Nomulus Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package google.registry.beam.spec11;
|
|
|
|
import static google.registry.beam.BeamUtils.getQueryFromFile;
|
|
|
|
import google.registry.beam.spec11.SafeBrowsingTransforms.EvaluateSafeBrowsingFn;
|
|
import google.registry.config.RegistryConfig.Config;
|
|
import google.registry.util.Retrier;
|
|
import google.registry.util.SqlTemplate;
|
|
import java.io.Serializable;
|
|
import javax.inject.Inject;
|
|
import org.apache.beam.runners.dataflow.DataflowRunner;
|
|
import org.apache.beam.runners.dataflow.options.DataflowPipelineOptions;
|
|
import org.apache.beam.sdk.Pipeline;
|
|
import org.apache.beam.sdk.coders.SerializableCoder;
|
|
import org.apache.beam.sdk.io.TextIO;
|
|
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;
|
|
import org.apache.beam.sdk.options.Description;
|
|
import org.apache.beam.sdk.options.PipelineOptionsFactory;
|
|
import org.apache.beam.sdk.options.ValueProvider;
|
|
import org.apache.beam.sdk.options.ValueProvider.NestedValueProvider;
|
|
import org.apache.beam.sdk.transforms.GroupByKey;
|
|
import org.apache.beam.sdk.transforms.MapElements;
|
|
import org.apache.beam.sdk.transforms.ParDo;
|
|
import org.apache.beam.sdk.values.KV;
|
|
import org.apache.beam.sdk.values.PCollection;
|
|
import org.apache.beam.sdk.values.TypeDescriptor;
|
|
import org.apache.beam.sdk.values.TypeDescriptors;
|
|
import org.json.JSONArray;
|
|
import org.json.JSONException;
|
|
import org.json.JSONObject;
|
|
|
|
/**
|
|
* Definition of a Dataflow pipeline template, which generates a given month's spec11 report.
|
|
*
|
|
* <p>To stage this template on GCS, run the {@link
|
|
* google.registry.tools.DeploySpec11PipelineCommand} Nomulus command.
|
|
*
|
|
* <p>Then, you can run the staged template via the API client library, gCloud or a raw REST call.
|
|
*
|
|
* @see <a href="https://cloud.google.com/dataflow/docs/templates/overview">Dataflow Templates</a>
|
|
*/
|
|
public class Spec11Pipeline implements Serializable {
|
|
|
|
@Inject
|
|
@Config("projectId")
|
|
String projectId;
|
|
|
|
@Inject
|
|
@Config("beamStagingUrl")
|
|
String beamStagingUrl;
|
|
|
|
@Inject
|
|
@Config("spec11TemplateUrl")
|
|
String spec11TemplateUrl;
|
|
|
|
@Inject
|
|
@Config("spec11BucketUrl")
|
|
String spec11BucketUrl;
|
|
|
|
@Inject
|
|
Retrier retrier;
|
|
|
|
@Inject
|
|
Spec11Pipeline() {}
|
|
|
|
/** Custom options for running the spec11 pipeline. */
|
|
interface Spec11PipelineOptions extends DataflowPipelineOptions {
|
|
/** Returns the yearMonth we're generating the report for, in yyyy-MM format. */
|
|
@Description("The yearMonth we generate the report for, in yyyy-MM format.")
|
|
ValueProvider<String> getYearMonth();
|
|
|
|
/**
|
|
* Sets the yearMonth we generate invoices for.
|
|
*
|
|
* <p>This is implicitly set when executing the Dataflow template, by specifying the "yearMonth"
|
|
* parameter.
|
|
*/
|
|
void setYearMonth(ValueProvider<String> value);
|
|
|
|
/** Returns the SafeBrowsing API key we use to evaluate subdomain health. */
|
|
@Description("The API key we use to access the SafeBrowsing API.")
|
|
ValueProvider<String> getSafeBrowsingApiKey();
|
|
|
|
/**
|
|
* Sets the SafeBrowsing API key we use.
|
|
*
|
|
* <p>This is implicitly set when executing the Dataflow template, by specifying the
|
|
* "safeBrowsingApiKey" parameter.
|
|
*/
|
|
void setSafeBrowsingApiKey(ValueProvider<String> value);
|
|
}
|
|
|
|
/** Deploys the spec11 pipeline as a template on GCS. */
|
|
public void deploy() {
|
|
// We can't store options as a member variable due to serialization concerns.
|
|
Spec11PipelineOptions options = PipelineOptionsFactory.as(Spec11PipelineOptions.class);
|
|
options.setProject(projectId);
|
|
options.setRunner(DataflowRunner.class);
|
|
// This causes p.run() to stage the pipeline as a template on GCS, as opposed to running it.
|
|
options.setTemplateLocation(spec11TemplateUrl);
|
|
options.setStagingLocation(beamStagingUrl);
|
|
|
|
Pipeline p = Pipeline.create(options);
|
|
PCollection<Subdomain> domains =
|
|
p.apply(
|
|
"Read active domains from BigQuery",
|
|
BigQueryIO.read(Subdomain::parseFromRecord)
|
|
.fromQuery(
|
|
SqlTemplate.create(getQueryFromFile(Spec11Pipeline.class, "subdomains.sql"))
|
|
.put("PROJECT_ID", projectId)
|
|
.put("DATASTORE_EXPORT_DATASET", "latest_datastore_export")
|
|
.put("REGISTRAR_TABLE", "Registrar")
|
|
.put("DOMAIN_BASE_TABLE", "DomainBase")
|
|
.build())
|
|
.withCoder(SerializableCoder.of(Subdomain.class))
|
|
.usingStandardSql()
|
|
.withoutValidation()
|
|
.withTemplateCompatibility());
|
|
|
|
evaluateUrlHealth(
|
|
domains,
|
|
new EvaluateSafeBrowsingFn(options.getSafeBrowsingApiKey(), retrier),
|
|
options.getYearMonth());
|
|
p.run();
|
|
}
|
|
|
|
/**
|
|
* Evaluate each {@link Subdomain} URL via the SafeBrowsing API.
|
|
*
|
|
* <p>This is factored out to facilitate testing.
|
|
*/
|
|
void evaluateUrlHealth(
|
|
PCollection<Subdomain> domains,
|
|
EvaluateSafeBrowsingFn evaluateSafeBrowsingFn,
|
|
ValueProvider<String> yearMonthProvider) {
|
|
domains
|
|
.apply("Run through SafeBrowsingAPI", ParDo.of(evaluateSafeBrowsingFn))
|
|
.apply(
|
|
"Map registrar e-mail to ThreatMatch",
|
|
MapElements.into(
|
|
TypeDescriptors.kvs(
|
|
TypeDescriptors.strings(), TypeDescriptor.of(ThreatMatch.class)))
|
|
.via(
|
|
(KV<Subdomain, ThreatMatch> kv) ->
|
|
KV.of(kv.getKey().registrarEmailAddress(), kv.getValue())))
|
|
.apply("Group by registrar email address", GroupByKey.create())
|
|
.apply(
|
|
"Convert results to JSON format",
|
|
MapElements.into(TypeDescriptors.strings())
|
|
.via(
|
|
(KV<String, Iterable<ThreatMatch>> kv) -> {
|
|
JSONObject output = new JSONObject();
|
|
try {
|
|
output.put("registrarEmailAddress", kv.getKey());
|
|
JSONArray threatMatches = new JSONArray();
|
|
for (ThreatMatch match : kv.getValue()) {
|
|
threatMatches.put(match.toJSON());
|
|
}
|
|
output.put("threatMatches", threatMatches);
|
|
return output.toString();
|
|
} catch (JSONException e) {
|
|
throw new RuntimeException(
|
|
String.format(
|
|
"Encountered an error constructing the JSON for %s", kv.toString()),
|
|
e);
|
|
}
|
|
}))
|
|
.apply(
|
|
"Output to text file",
|
|
TextIO.write()
|
|
.to(
|
|
NestedValueProvider.of(
|
|
yearMonthProvider,
|
|
yearMonth ->
|
|
String.format(
|
|
"%s/%s/%s-monthly-report", spec11BucketUrl, yearMonth, yearMonth)))
|
|
.withoutSharding()
|
|
.withHeader("Map from registrar email to detected subdomain threats:"));
|
|
}
|
|
}
|