google-nomulus/java/google/registry/monitoring/metrics/MutableDistribution.java
shikhman dcb189943b Add the Distribution data type for instrumentation
This is one of a series of CLs adding a new metric type, EventMetric, which
is used for tracking numerical distributions.

-------------
Created by MOE: https://github.com/google/moe
MOE_MIGRATED_REVID=132103552
2016-09-07 11:54:26 -04:00

111 lines
3.7 KiB
Java

// Copyright 2016 The Domain Registry Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package google.registry.monitoring.metrics;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static google.registry.monitoring.metrics.MetricsUtils.checkDouble;
import com.google.common.collect.ImmutableRangeMap;
import com.google.common.collect.ImmutableSortedSet;
import com.google.common.collect.Ordering;
import com.google.common.collect.Range;
import com.google.common.collect.TreeRangeMap;
import com.google.common.primitives.Doubles;
import java.util.Map;
import javax.annotation.concurrent.NotThreadSafe;
/**
* A mutable {@link Distribution}. Instances of this class <b>should not</b> be used to construct
* {@link MetricPoint} instances as {@link MetricPoint} instances are supposed to represent
* immutable values.
*
* @see ImmutableDistribution
*/
@NotThreadSafe
public final class MutableDistribution implements Distribution {
private final TreeRangeMap<Double, Long> intervalCounts;
private final DistributionFitter distributionFitter;
private double sumOfSquaredDeviation = 0.0;
private double mean = 0.0;
private int count = 0;
/** Constructs an empty Distribution with the specified {@link DistributionFitter}. */
public MutableDistribution(DistributionFitter distributionFitter) {
this.distributionFitter = checkNotNull(distributionFitter);
ImmutableSortedSet<Double> boundaries = distributionFitter.boundaries();
checkArgument(boundaries.size() > 0);
checkArgument(Ordering.natural().isOrdered(boundaries));
this.intervalCounts = TreeRangeMap.create();
double[] boundariesArray = Doubles.toArray(distributionFitter.boundaries());
// Add underflow and overflow intervals
this.intervalCounts.put(Range.lessThan(boundariesArray[0]), 0L);
this.intervalCounts.put(Range.atLeast(boundariesArray[boundariesArray.length - 1]), 0L);
// Add finite intervals
for (int i = 1; i < boundariesArray.length; i++) {
this.intervalCounts.put(Range.closedOpen(boundariesArray[i - 1], boundariesArray[i]), 0L);
}
}
public void add(double value) {
add(value, 1L);
}
public void add(double value, long numSamples) {
checkArgument(numSamples > 0, "numSamples must be greater than 0");
checkDouble(value);
Map.Entry<Range<Double>, Long> entry = intervalCounts.getEntry(value);
intervalCounts.put(entry.getKey(), entry.getValue() + numSamples);
this.count += numSamples;
// Update mean and sumOfSquaredDeviation using Welford's method
// See Knuth, "The Art of Computer Programming", Vol. 2, page 232, 3rd edition
double delta = value - mean;
mean += delta * numSamples / count;
sumOfSquaredDeviation += delta * (value - mean) * numSamples;
}
@Override
public double mean() {
return mean;
}
@Override
public double sumOfSquaredDeviation() {
return sumOfSquaredDeviation;
}
@Override
public long count() {
return count;
}
@Override
public ImmutableRangeMap<Double, Long> intervalCounts() {
return ImmutableRangeMap.copyOf(intervalCounts);
}
@Override
public DistributionFitter distributionFitter() {
return distributionFitter;
}
}